Artificial intelligence-based analysis of associations between learning curve and clinical outcomes in endoscopic and microsurgical lumbar decompression surgery

Author:

Saravi BabakORCID,Zink Alisia,Ülkümen Sara,Couillard-Despres Sebastien,Lang Gernot,Hassel Frank

Abstract

Abstract Purpose A common spine surgery procedure involves decompression of the lumbar spine. The impact of the surgeon’s learning curve on relevant clinical outcomes is currently not well examined in the literature. A variety of machine learning algorithms have been investigated in this study to determine how a surgeon's learning curve and other clinical parameters will influence prolonged lengths of stay (LOS), extended operating times (OT), and complications, as well as whether these clinical parameters can be reliably predicted. Methods A retrospective monocentric cohort study of patients with lumbar spinal stenosis treated with microsurgical (MSD) and full-endoscopic (FED) decompression was conducted. The study included 206 patients with lumbar spinal stenosis who underwent FED (63; 30.6%) and MSD (118; 57.3%). Prolonged LOS and OT were defined as those exceeding the 75th percentile of the cohort. Furthermore, complications were assessed as a dependent variable. Using unsupervised learning, clusters were identified in the data, which helped distinguish between the early learning curve (ELC) and the late learning curve (LLC). From 15 algorithms, the top five algorithms that best fit the data were selected for each prediction task. We calculated the accuracy of prediction (Acc) and the area under the curve (AUC). The most significant predictors were determined using a feature importance analysis. Results For the FED group, the median number of surgeries with case surgery type at the time of surgery was 72 in the ELC group and 274 in the LLC group. FED patients did not significantly differ in outcome variables (LOS, OT, complication rate) between the ELC and LLC group. The random forest model demonstrated the highest mean accuracy and AUC across all folds for each classification task. For OT, it achieved an accuracy of 76.08% and an AUC of 0.89. For LOS, the model reached an accuracy of 83.83% and an AUC of 0.91. Lastly, in predicting complications, the random forest model attained the highest accuracy of 89.90% and an AUC of 0.94. Feature importance analysis indicated that LOS, OT, and complications were more significantly affected by patient characteristics than the surgical technique (FED versus MSD) or the surgeon's learning curve. Conclusions A median of 72 cases of FED surgeries led to comparable clinical outcomes in the early learning curve phase compared to experienced surgeons. These outcomes seem to be more significantly affected by patient characteristics than the learning curve or the surgical technique. Several study variables, including the learning curve, can be used to predict whether lumbar decompression surgery will result in an increased LOS, OT, or complications. To introduce the provided prediction tools into clinics, the algorithms need to be implemented into open-source software and externally validated through large-scale randomized controlled trials.

Funder

Joimax GmbH

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3