The value of radiomics-based CT combined with machine learning in the diagnosis of occult vertebral fractures

Author:

Li Wu-Gen,Zeng Rou,Lu Yong,Li Wei-Xiang,Wang Tong-Tong,Lin Huashan,Peng Yun,Gong Liang-Geng

Abstract

Abstract Purpose To develop and evaluate the performance of radiomics-based computed tomography (CT) combined with machine learning algorithms in detecting occult vertebral fractures (OVFs). Materials and methods 128 vertebrae including 64 with OVF confirmed by magnetic resonance imaging and 64 corresponding control vertebrae from 57 patients who underwent chest/abdominal CT scans, were included. The CT radiomics features on mid-axial and mid-sagittal plane of each vertebra were extracted. The fractured and normal vertebrae were randomly divided into training set and validation set at a ratio of 8:2. Pearson correlation analyses and least absolute shrinkage and selection operator were used for selecting sagittal and axial features, respectively. Three machine-learning algorithms were used to construct the radiomics models based on the residual features. Receiver operating characteristic (ROC) analysis was used to verify the performance of model. Results For mid-axial CT imaging, 6 radiomics parameters were obtained and used for building the models. The logistic regression (LR) algorithm showed the best performance with area under the ROC curves (AUC) of training and validation sets of 0.682 and 0.775. For mid-sagittal CT imaging, 5 parameters were selected, and LR algorithms showed the best performance with AUC of training and validation sets of 0.832 and 0.882. The LR model based on sagittal CT yielded the best performance, with an accuracy of 0.846, sensitivity of 0.846, and specificity of 0.846. Conclusion Machine learning based on CT radiomics features allows for the detection of OVFs, especially the LR model based on the radiomics of sagittal imaging, which indicates it is promising to further combine with deep learning to achieve automatic recognition of OVFs to reduce the associated secondary injury.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3