Finite element analysis of the knee joint stress after partial meniscectomy for meniscus horizontal cleavage tears

Author:

Chen Hao,Liu Lantao,Zhang Youlei

Abstract

Abstract Objective To establish a finite element model of meniscus horizontal cleavage and partial resection, to simulate the mechanical changes of knee joint under 4 flexion angles, and to explore what is the optimal surgical plan. Methods We used Mimics Research, Geomagic Wrap, and SolidWorks computer software to reconstruct the 3D model of the knee joint, and then produced the horizontal cleavage tears model of the internal and lateral meniscus, the suture model, and the partial meniscectomy model. These models were assembled into a complete knee joint in SolidWorks software, and corresponding loads and boundary constraints were added to these models in ANSYS software to simulate the changing trend of pressure and shear force on femoral condylar cartilage, meniscus, and tibial cartilage under the flexion angles of 0°, 10°, 20°, 30° and 40° of the knee joint. At the same time, the difference of force area between medial interventricular and lateral interventricular of knee joint under four states of bending the knee was compared, to explore the different effects of different surgical methods on knee joint after horizontal meniscus tear. Results Within the four medial meniscus injury models, the lowest peak internal pressure and shear force of the knee joint was observed in the meniscal suture model; the highest values were found in the bilateral leaflet resection model and the inferior leaflet resection model; the changes of pressure, shear force and stress area in the superior leaflet resection model were the most similar to the changes of the knee model with the meniscal suture model. Conclusion Suture repair is the best way to maintain the force relationship in the knee joint. However, resection of the superior leaflet of the meniscus is also a reliable choice when suture repair is difficult.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3