Effect of residual volume after surgery of the discoid lateral meniscus on tibiofemoral joint biomechanics: a finite element analysis

Author:

Shen Xin,Lu Meifeng,Liu Muzi,Xie Ronghui,Gong Shiguo,Yang Chunjing,Sun Guicai

Abstract

Abstract Background The purpose of this study was to investigate the influence of different residual meniscus volume on the biomechanics of tibiofemoral joint after discoid lateral meniscus (DLM) surgery by finite element analysis. Methods A knee joint model was established based on CT and MRI imaging data. The DLM model was divided into five regions according to conventional meniscectomy, with volumes of 15%, 15%, 15%, 15%, 15%, and 40% for each region. Additionally, the DLM model was divided into anterior and posterior parts to obtain ten regions. The DLM was resected according to the design scheme, and together with the intact discoid meniscus, a total of 15 models were obtained. Finite element analysis was conducted to assess shear and pressure trends on the knee joint. Results The study observed significant changes in peak shear stress and compressive stress in the lateral meniscus and lateral femur cartilage. As the meniscus volume decreased, there was an increase in these stresses. Specifically, when the meniscus volume reduced to 40%, there was a sharp increase in shear stress (302%) and compressive stress (152%) on the meniscus, as well as shear stress (195%) and compressive stress (157%) on the lateral femur cartilage. Furthermore, the model grouping results showed that preserving a higher frontal volume in the meniscus model provided better biomechanical advantages. Conclusion The use of finite element analysis has demonstrated that preserving more than 55% of the meniscus volume is necessary to prevent a significant increase in joint stress, which can potentially lead to joint degeneration. Additionally, it is crucial to preserve the front volume of the DLM in order to achieve improved knee biomechanical outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3