A protocol for chronic pain outcome measurement enhancement by linking PROMIS-29 scale to legacy measures and improving chronic pain stratification

Author:

Herman Patricia M.ORCID,Edelen Maria O.,Rodriguez Anthony,Hilton Lara G.,Hays Ron D.

Abstract

Abstract Background Substantial investment has gone into research on the efficacy and effectiveness of pharmaceutical and nonpharmacologic interventions for chronic pain. However, synthesizing this extensive literature is challenging because of differences in the outcome measures used in studies of similar or competing interventions. The absence of a common metric makes it difficult to replicate findings, pool data from multiple studies, resolve conflicting conclusions, or reach consensus when interpreting findings. Methods This study has a seven-member Advisory Council of chronic pain experts. Preliminary analyses will be performed on data from several large existing datasets; intermediate analyses will be performed using primary data collected from Amazon’s Mechanical Turk (MTurk); and cross-validation will use primary data collected from a nationally-representative, probability-based panel. Target sample size for both primary datasets is 1500. The three study aims are as follows: Aim 1 will develop and evaluate links between the 29-item Patient-Reported Outcomes Measurement Information System (PROMIS®-29) and legacy measures used for chronic pain such as the Roland-Morris Disability Questionnaire (RMDQ) and the Oswestry Disability Index (ODI). We will assess the best method of score linking and create crosswalk tables. Aim 2 will evaluate and refine the Impact Stratification Score (ISS) based on 9 PROMIS-29 items and proposed by the NIH Research Task Force on chronic low back pain. We will evaluate the ISS in terms of other indicators of condition severity and patient prognosis and outcomes and identify cut-points to stratify chronic pain patients into subgroups. Aim 3 will evaluate the strengths and limitations of MTurk as a data collection platform for estimating chronic pain by comparing its data to other data sources. Discussion The accomplishment of Aims 1 and 2 will allow direct comparison of results across past and future studies of chronic pain. These comparisons will help us to understand different results from seemingly similar studies, and to determine the relative effectiveness of all pharmaceutical and nonpharmacologic interventions for chronic pain across different trials. Aim 3 findings will provide valuable information to researchers about the pros and cons of using the MTurk platform for research-based data collection. Trial registration ClinicalTrials.gov: NCT04426812; June 10, 2020.

Funder

National Center for Complementary and Integrative Health

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3