Establishment and evaluation of module-based immune-associated gene signature to predict overall survival in patients of colon adenocarcinoma

Author:

Lu Jing,Annunziata Francesco,Sirvinskas Dovydas,Omrani Omid,Li Huahui,Rasa Seyed Mohammad Mahdi,Krepelova Anna,Adam Lisa,Neri FrancescoORCID

Abstract

Abstract Background Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identification and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-related signature. Methods We integrated different datasets and applied bioinformatic and statistical methods to construct a robust immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual patients. Results The immune-associated risk model discriminated high-risk patients in our investigated and validated cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity. Conclusions Our study provides a novel tool that may contribute to the optimization of risk stratification for survival and personalized management of COAD. Graphical Abstract

Funder

Alexander von Humboldt-Stiftung

Fritz Thyssen Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3