NCOA7 Regulates Growth and Metastasis of Clear Cell Renal Cell Carcinoma via MAPK/ERK Signaling Pathway

Author:

Guo Jiayu12,Ke Shuai2ORCID,Chen Qi12,Zhou Jiangqiao12,Guo Jia2,Qiu Tao12ORCID

Affiliation:

1. Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

NCOA7 is a nuclear receptor coactivator that is downregulated in a variety of cancers. However, the expression and prognostic significance of NCOA7 in clear cell renal cell carcinoma (ccRCC) remain unknown. The expression of NCOA7 in ccRCC tissues was analyzed using bioinformatics analysis, Western blotting, and immunohistochemistry. Kaplan–Meier analysis, the receiver operating characteristic (ROC) curve, and clinicopathological correlation analysis were used to assess the predictive power of NCOA7. Overexpression function tests were conducted in cells and mouse models to clarify the function and mechanism of NCOA7 in inhibiting the progression of ccRCC. NCOA7 expression was downregulated in all three subtypes of renal cell carcinoma, and only had significant prognostic value for patients with ccRCC. NCOA7 overexpression inhibited the proliferation, invasion, and metastasis of ccRCC cells in vivo and in vitro. Mechanistically, NCOA7 inhibited the MAPK/ERK pathway to regulate epithelial–mesenchymal transformation (EMT) and apoptosis, thereby inhibiting the progression of ccRCC. NCOA7 inhibits tumor growth and metastasis of ccRCC through the MAPK/ERK pathway, thus indicating its potential as a prognostic marker and therapeutic target for ccRCC.

Funder

National Natural Science Foundation of China

Wuhan Science and Technology Bureau

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3