Author:
Shahbazizadeh Saeedeh,Naji-Tabasi Sara,Shahidi-Noghabi Mostafa
Abstract
Abstract
Background
In order to deliver bioactive compounds with better thermal stability and delayed release characteristics, nanogels can be placed inside a hydrogel network. The aim of the present study was to develop isolated soy protein (ISP)–sodium alginate (SA) nanogel (NG) (0, 10, 15 and 20%)-based cress seed gum (CSG) hydrogel as a delivery system of curcumin (Cur). A systematic study was performed to describe the rheological, thermal, microstructural, antioxidant activity properties, and release kinetic of NG-based hydrogels.
Results
Rheological studies showed participation of 10% NG resulted in more elastic, and compact composite with stable diffusion properties. Complex modulus of 10% NG composite was 60.96 (Pa), which was higher than the other hydrogels. The SEM images confirmed that 10% NG–hydrogel composite, can have better mechanical properties. NG-based hydrogel were thermally more stable than hydrogel and nanogel. The presence of different percentage of NG in composite significantly changed Cur release rate in intestinal condition. The Cur release in the intestine was well described by the Peppas model and no release was observed in stomach medium.
Conclusions
The results highlight the advantage of using composite hydrogel as a promising strategy for improving thermal stability and the successful delivery of bioactive materials.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献