Ethology of Sunn-pest oviposition in interaction with deltamethrin loaded on mesoporous silica nanoparticles as a nanopesticide

Author:

Alizadeh Mahdi,Sheikhi-Garjan Aziz,Ma’mani Leila,Hosseini Salekdeh Ghasem,Bandehagh Ali

Abstract

Abstract Background Wheat is one of the main food for around 2 billion people worldwide. Among the biological stressors, Eurygaster integriceps Puton is a damaging insect in wheat and barley fields, which harms them both quantitatively (by overwintered adults) and qualitatively (by instar nymphs). The ovipositional and the new generation’s production control are pivotal approaches to control the severe damages of Sunn-pest. Methods In this study, to enhance the deltamethrin effectiveness while reducing its required dosage and also reducing the adverse health and environmental impacts, a novel MSN-based deltamethrin formulation was prepared and evaluated based on the laying-eggs number and oviposition behavior. To this, deltamethrin was loaded on KIT-6 mesoporous silica nanoparticles and characterized using SEM, TEM, and TGA analysis, and the insect potential of deltametrin@KIT6 was then evaluated. Results The results showed that there might be differences between the treatments (KIT-6, deltamethrin@KIT-6, deltamethrin commercial formulation, and water as a control) in terms of the insect control via the laying-egg and next-generation prevention. The results showed that KIT-6 and deltamethrin@KIT-6 could reduce the oviposition rate compared to water as the control. Deltamethrin@KIT-6 not only caused the less oviposition done but the eggs were scattered and the batch of eggs did not have a uniform-shape similar to the control mode. The deltamethrin@KIT-6 nanopesticide could increase the pesticide effectiveness by reducing the Sunn-pest’s oviposition and nymphal population and subsequently decreasing the damage caused by them. So that the concentrations of 10, 25, and 125 mg L−1 of deltamethrin@KIT-6 reduced oviposition by 63.24%, 66.11%, and 67.62%, respectively, compared to the control group. On the other hand, descriptive observations showed that another possible tension is created through insect eggs deposition on the boundary layer of leaves. Conclusion The MSN-based nanoformulation could be effectively considered to control the next-generation population density of Sunn-pest. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3