Abstract
Abstract
Background
Soil carbon-rich organic amendments (biochar, humic substances) may improve the quality and fertility of arable soil. Their co-application can additively enhance the beneficial effect on soil. Hypothetically, the pre-treatment of biochar, by aging via soaking in a solution of commercially available humic substances, could result in synergism, which may exceed the benefit from simple co-application of both amendments to the soil. Therefore, the aim of this study was to investigate the impact of biochar, humic substances, the combination of both, and the impact of biochar aged by humic substances solution on soil microbial activities and plant growth in a short-term pot experiment with lettuce.
Results
The aging of biochar decreased the C:N ratio as compared to non-activated biochar. The co-application of biochar and humic substances into the soil resulted in the highest microbial biomass carbon and respiration activity. The majority of enzyme activities (β-glucosidase, arylsulfatase, N-acetyl-β-d-glucosaminidase, phosphatase) were the highest in humic substances-amended soil. The application of humic substances and biochar with humic substances seemed to stimulate microbial growth and activity followed by the competition of microflora for nutrients with plants, whereas the aged biochar behaved differently. The plants treated by aged biochar achieved the highest values of dry aboveground and root biomass of all variants. However, the assumed rapid uptake of nutrients by plants resulted in lower nutrient availability for microflora, and a decline in microbial viability.
Conclusions
Based on this study, the positive effect of co-applied humic substances and biochar on soil fertility, quality, and health can be concluded. The usability of biochar aging by humic solution requires further study.
Graphic abstract
Funder
Technology Agency of the Czech Republic
ministerstvo školství, mládeže a tělovýchovy
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Reference73 articles.
1. Li Y, Fang F, Wei J, Wu X, Cui R, Li G, et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Sci Rep. 2019;9(1):12014.
2. Onica BM, Vidican R, Sandor M. A short review about using MicroResp method for the assessment of community level physiological profile in agricultural soils. Bull Univ Agric Sci Vet Med Cluj-Napoca Agric. 2018;75(1):24.
3. Aon MA, Colaneri AC II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl Soil Ecol. 2001;18(3):255–70.
4. Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: concept and review. Soil Biol Biochem. 2015;83:184–99.
5. Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. Chapter two—a meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In: Sparks DL, editor. Advances in agronomy, vol. 124. San Diego: Academic Press; 2014. p. 37–89.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献