Biochar aged or combined with humic substances: fabrication and implications for sustainable agriculture and environment-a review

Author:

Rahim Hafeez Ur,Allevato Enrica,Vaccari Francesco Primo,Stazi Silvia RitaORCID

Abstract

Abstract Purpose Humic substances (HSs) and biochar (BC) are carbon-based soil amendments. These amendments improve soil health and fertility, enhance nutrient pools and carbon content, remove soil pollutants, and enhance plant performance. As a result, they contribute to agro-environmental sustainability and the development of a circular bioeconomy. However, there is a lack of research on the effects of HSs-aged BC or the co-application of BC and HSs on the agro-environmental system. Therefore, further studies are needed to understand the impacts of these amendments on the agro-environmental system. Methods This study utilizes a novel technique based on BC aging with HSs to investigate the BC-aging process, factors influencing it, as well as the impact of BC and HSs on soil physicochemical properties, nutrient pools, microbial communities, immobilization of metal ions in the soil, and plant performance. We gathered original research articles, meta-analysis papers, book chapters, conference proceedings, and technical notes from high-quality peer-reviewed journals and reputable websites. Results and discussion The extensive literature evaluation revealed that the potential benefits of BC are closely related to variations in the physicochemical composition of the BC and soil because microorganisms do not prefer fresh BC for colonization. In some studies, BC showed a detrimental impact on the soil microbiome. Therefore, the influence of BC on the soil microbiome, nutrient pool, pollutant removal, and plant growth strongly depends on the residence time of BC in the soil and its prior aging with HSs. Aging BC with HSs is more effective than using fresh BC as it enhances nutrient pools, accessibility to plants, pollutant amelioration capacity, microbial activities, and consequently, plant performance due to the presence of surface functional groups and the adsorbed nutrient-rich organic molecules. Conclusions The soil fertility traits and plant performance were impacted by aging or a combination of BC with HSs. However, detailed characterizations and continuous experiments are required to gain in-depth insights into the interaction mechanisms between the aging of BC with HSs via the liquid soaking technique and soil fertility traits.

Funder

Ministero dell'Università e della Ricerca

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3