Design of a bio-conditioner prototype for the treatment of degraded soils: biomass production and lignite formulation for Microbacterium sp. CSB3

Author:

Pantoja-Guerra Manuel,Valero-Valero Nelson

Abstract

Abstract Background A new prototype of bio-conditioner useful in rehabilitation of degraded soils was performed. In order to obtain this aim two stages were established: production of biomass of Microbacterium sp. CSB3 and formulation of this inoculum in a sediment supplemented with low-rank coal (LRC). Materials and methods The effect of agitation and pH on microbial growth was determined. As response variables, the final production of biomass (Xf) and yield (Yx/s) were determined. Growth dynamics of CSB3 in a 2-L reactor was also evaluated through Xf, Yx/s and the determination of kinetic parameters (specific growth rate [μ] and duplication time [Dt]). The formulation of CSB3 was evaluated; mixtures of several LRC proportions with a sediment from a municipal aqueduct were made. During 90 days, the viability of CSB3 was monitored by counting CFU. Results The optimal pH and agitation for Xf and Yx/x were 7.5 and 232 rpm, respectively; the values of Xf, Yx/s, μ and Dt in 2-L reactor were: 1.5 gL−1, 0.28 g/g, 0.0208 h−1, 33.3 h, respectively. Regarding the formulation, the most suitable combination to conserve the viability of CSB3 was LRC 25%–sediment 75%; the heavy metals content of LRC allow to infer that the prototype of bio-conditioner does not represent a pollution risk for environment soil. Conclusions It was possible to optimize the growth of CSB3 under laboratory conditions. The viability of CSB3 could be maintained by a formulation in a sediment supplemented with lignite; this formulation constitutes a new prototype of soil bio-conditioner.

Funder

COLCIENCIAS

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3