Preparation of biologically activated lignite immobilized SRB particles and their AMD treatment characteristics

Author:

Di Junzhen,Jiang Yangyang,Wang Mingjia,Dong Yanrong

Abstract

AbstractIn response to the insufficient supply of carbon sources and the toxicity of heavy metal ions when using sulfate reducing bacteria (SRB) to treat acid mine wastewater (AMD), the immobilized particles are prepared with Rhodopseudomonas, SRB and lignite as the main raw materials. And based on single factor test and orthogonal test to determine the optimal ratio of biologically activated lignite fixed SRB particles. The adsorption characteristics of immobilized particles were studied under the optimal ratio, and the reaction kinetics and adsorption capacity of SRB particles immobilized on biologically activated lignite to different ions were analyzed. The results show that: lignite not only has good adsorption performance, but also can be used as the carbon source of SRB after being degraded by Rhodopseudomonas, solving the problems of low removal efficiency of SRB treatment of AMD and insufficient carbon source supply. When the dosage of lignite (particle size is 200 mesh), Rhodopseudomonas, and SRB are 3%, 10%, and 10% mesh, the prepared biologically activated lignite-immobilized SRB particles have the best effect on AMD treatment. The removal rates of SO42−, Zn2+, and Cu2+ were 83.21%, 99.59%, and 99.93%, respectively, the pH was increased to 7.43, the COD release was 523 mg/L, and the ORP value was − 134 mV. The reduction process of SO42− by the biologically activated lignite-immobilized SRB particles conforms to the pseudo-first-order kinetics, and the adsorption of Zn2+ is more in line with the Freundlich isotherm adsorption equation and the pseudo-second-order kinetic model. And it does not spread in a single form, both internal and external diffusion occur. SEM, FT-IR, and BET analysis of biologically activated lignite immobilized SRB particles showed that the pore structure is developed, has a large number of adsorption sites, and some activated groups participate in the reaction. The adsorption process of Zn2+ and Cu2+ in AMD meets the multi-layer adsorption theory.

Funder

National Natural Science Foundation of China

"Rejuvenating Liaoning Talents" youth top talent program of Liaoning Province

discipline innovation team of Liaoning University of engineering and Technology

Department of Education of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3