Impact of gamma irradiation pretreatment on biochemical and molecular responses of potato growing under salt stress

Author:

Mohamed Elhamahmy Ali,Osama Elsadany,Manal Eid,Samah Abdelazeem,Salah Gerish,Hazem Kalaji M.ORCID,Jacek Wróbel,Nabil Elsheery

Abstract

Abstract Background Previous literatures revealed that gamma rays have an increasing effect on salt tolerance in different plants. In vitro experiment was conducted to study the effect of gamma rays (20 Gray) on salt tolerance of four potato cultivars (Lady Rosetta, Diamante, Gold, and Santana). Results Gamma-treated Santana plantlets were more tolerant to salinity as compared to other cultivars. It showed a significant increment of fresh weight (250% over the untreated). Gamma-treated plantlets of Lady Rosetta, Diamante, and Gold showed higher activity of peroxidase (POD) and polyphenol oxidase (PPO). Isoenzymes analysis showed an absence of POD 3, 4, and 5 in Gold plantlets. The dye of most PODs and PPOs bands were denser (more active) in gamma-treated plantlets of Santana as compared to other cultivars. Both gamma-treated and untreated plantlets showed the absence of PPO1 in Lady Rosetta and Diamante, and PPO 3, 4, and 5 in Gold plantlets. Genetic marker analysis using ISSR with six different primers showed obvious unique negative and positive bands with different base pairs in mutant plantlets as compared to the control, according to primer sequence and potato genotype. The 14A primer was an efficient genetic marker between mutated and unmutated potato genotypes. Santana had a unique fingerprint in the 1430-pb site, which can be a selectable marker for the cultivar. An increment in genetic distance between Gold cultivar and others proved that the mutation was induced because of gamma rays. Conclusion We assume that irradiation of potato callus by 20-Gy gamma rays is an effective process for inducing salt resistance. However, this finding should be verified under field conditions. Graphic Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3