Integrative metabolomics–flavoromics approach to assess metabolic shifts during ripening of mango (Mangifera indica L.) cultivar Nam Dok Mai Si Thong

Author:

Aung Ye Lin,Lorjaroenphon Yaowapa,Rumpagaporn Pinthip,Sittipod Sichaya,Jirapakkul Wannee,Na Jom KriskamolORCID

Abstract

Abstract Background Nam Dok Mai Mango (Mangifera indica L.) is considered as one of the famous tropical fruits in Thailand with an attractive taste and fragrance. A rapidly powerful comprehensive technique to investigate the aromatic as well as metabolic compounds is required to follow the ripening stage and identification of biomarkers in mango cv. Nam Dok Mai. To date, only a few omics-based studies have been published on the ripening process of mango. The present study aimed to establish an advanced omics-based approach using integrated metabolomics–flavoromic profiles to follow the ripening process of Nam Dok Mai Si Thong mango fruit. Results 56 metabolites and 33 flavor volatile components were detected in Nam Dok Mai Si Thong mango. Palmitic acid shown the highest content in lipid fraction of mango pulp (28%) followed by linolenic acid (25%) and linoleic acid (23%) at various ripening stages during ripening. β-Sitosterol (3.9%), campesterol (2.4%), and sitostanol (2.4%) were higher at day 0 of ripening. Glycine and leucine were highest at day 4 of ripening (3.4 and 3.0%, respectively). The highest sucrose level (48.7%) was observed at 8 days of ripening. Ethyl octanoate (6.2–9.5%) and ethyl decanoate (5.4–6.5%) were significantly higher at days 4 to 8 of ripening. Conclusions Among 19 biomarkers measured, nine metabolites (palmitic acid, linoleic acid, linolenic acids, β-sitosterol, sucrose, citric acid, malic acid, glycine, and leucine), and 2 flavors (ethyl octanoate and ethyl decanoate) showed a good correlation with ripening-associated changes at days 0 to 8 during ripening. The biomarkers identified in this study could be used to track the ripening stages of Nam Dok Mai Si Thong mango. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3