Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts

Author:

Koocheki Arash,Hesarinejad Mohammad Ali,Mozafari M. R.

Abstract

Abstract Background In the present study, the effects of NaCl and CaCl2 (0–200 mM) on the rheological properties of Lepidium perfoliatum seed gum (LPSG) as a novel potential source of hydrocolloid were investigated. Sugar composition and FTIR analysis were measured to supply more structural information. Results The results illustrated that LPSG had small amounts of uronic acids (6.65%) and it is likely an arabinoxylan-type polysaccharide (it has 44.66% and 31.99% xylose and arabinose, respectively). The FTIR spectra also revealed that LPSG behaved like a typical polyelectrolyte due to the presence of carboxyl and hydroxyl groups. It was observed that the gum solutions exhibited viscoelastic properties in the presence of NaCl and CaCl2 salts. The tan δ values for all samples were less than 1 but greater than 0.1, exposing the weak gel-like behavior at different ion types and ionic strengths. With increasing salts concentrations, the limiting values of strain mostly increased due to the interchain interactions (from 1.46 to 4.61 and from 0.99 to 2.13 for NaCl and CaCl2, respectively). Therefore, the addition of salts increased the stiffness of mucilage solutions in the concentrated regime. The results of frequency sweep tests revealed that storage and loss moduli were increased with increasing ion concentration. This effect was more pronounced for LPSG solutions containing Ca2+. Among various models, the model of Higiro1 showed a higher efficiency to evaluate the intrinsic viscosity of LPSG for all co-solutes (R2 ≥ 0.98). With increasing the concentration of salts, the intrinsic viscosity of LPSG decreased. Calcium ions had a more diminution effect on intrinsic viscosity than sodium ions. Conclusions Trying to adjust the salt concentration could modify the rheological properties of food products. Because food contains a variety of additives, further research should look into the rheological properties of LPSG at different pHs, as well as the presence of other salts and sugars often employed in the food industry. LPSG has the potential to be used in biomedical, pharmaceutical, food industries, tissue engineering, and cosmetic applications due to its biocompatibility, rheological properties, and antioxidant activities. Graphical Abstract

Funder

College of Agriculture, Ferdowsi University of Mashhad

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3