Hydrochar from sugarcane industry by-products: assessment of its potential use as a soil conditioner by germination and growth of maize

Author:

Fregolente Laís G.,dos Santos João Vitor,Mazzati Felipe S.,Miguel Thaiz B. A. R.,de C. Miguel Emílio,Moreira Altair B.,Ferreira Odair P.,Bisinoti Márcia C.ORCID

Abstract

Abstract Background Hydrothermal carbonization (HTC) is a thermochemical process to convert biomass in carbon-rich materials (hydrochar). The use of sugarcane industry by-products in HTC has been evaluated, generating a hydrochar rich in nutrients, which could be used as a soil conditioner. We raised the hypothesis that the application of hydrochar in soil can improve its nutrient characteristics, bringing a better environment and favouring plant growth, expecting a development similar to that one observed in anthropogenic soils. Results Germination studies were performed expecting a species-dependent response, using maize and tomato seeds, whose development was assessed in two soluble fractions obtained from hydrochar aiming to evaluate different rhizosphere conditions. The results showed a better development of maize, especially in the aqueous soluble fraction, whose nutrient concentration was lower than that of the acid soluble fraction, as well as the organic composition. Maize growth in soils showed a better initial development in ultisol compared to oxisol, this being inferred by root:shoot biomass ratio and by scanning electron microscopy (SEM) images. However, the development of maize was better in anthropogenic soil compared to soils that received hydrochar. Conclusion The maize growth, compared with that carried out in anthropogenic soil, suggests that during the period evaluated the addition of hydrochar in soil did not have a negative effect upon maize development in its initial phase, and could have even favoured rooting in ultisol.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3