Lime-assisted hydrothermal humification and carbonization of sugar beet pulp: Unveiling the yield, quality, and phytotoxicity of products

Author:

Ghaslani Mona,Rezaee Reza,Aboubakri Omid,Sarlaki Ehsan,Hoffmann Thomas,Maleki Afshin,Marzban Nader

Abstract

Hydrothermal carbonization (HTC) solid and liquid products may inhibit seed germination, necessitating post-treatment. The hydrothermal humification (HTH) method addresses this drawback by transforming inhibitory compounds, such as aromatics, into artificial humic acids (AHAs) and artificial fulvic acids (AFAs). This study introduces a novel approach by investigating the substitution of the commonly used alkaline agent in HTH, KOH, with hydrated lime to develop cost-effective hydrothermal fertilizers from sugar beet pulp, enriching them with AHAs. It assesses the effects of lime on AHA production and soluble organic compounds compared to KOH. The results indicate that lime significantly reduces furans (from 560 to 3.15 mg/kg DM in solid and from 344 to 3.86 mg/L in process liquid) and boosts sugars and organic acids, especially lactic acid (from 4.70 to 65.82 g/kg DM in solid and from 4.05 to 22.89 mg/L in process liquid), increasing hydrochar yield (68.8% with lime vs. 27.4% with KOH). Despite the lower AHA production with lime compared to KOH (3.47% vs. 15.50%), lime-treated hydrothermal products are abundant in calcium and magnesium, boasting a pH of 7. This property presents a safer and more efficient alternative to hydrothermal fertilizers. The characterization of AHAs aligns with standard and natural humic substances, while lime-assisted HTH products, applied at a level of 0.01% w/w, could significantly enhance wheat growth and nutrient uptake compared to the control group. Importantly, these products show no toxicity on Daphnia magna, underscoring their potential for sustainable agriculture.

Publisher

Alpha Creation Enterprise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3