Evaluating the application feasibility of thyme oil nanoemulsion coating for extending the shelf life of papaya (Carica papaya cv. Tainung No. 2) with postharvest physiology and quality parameters

Author:

Yu Meng-Chieh,Hou Chih-Yao,Tsay Jyh-Shyan,Chung Hsin-Ying,Huang Ping-HsiuORCID,Liang Yu-Shen

Abstract

AbstractPapaya (Carica papaya L.) is a typical climacteric fruit with a brief shelf life due to the rapid degradation of quality during post-ripening, necessitating appropriate postharvest management to address this challenge. This study aimed to investigate the characteristics of thyme oil nanoemulsion (TO-NE) coating and utilize its benefits for preserving papaya. This study also investigated the physiological properties and quality changes of papaya storage at 20 ℃ and, in parallel, examined the effects of TO-NE coating to mitigate microbial infection of papaya during storage. The postharvest papaya was soaked in different concentrations (0.1, 0.25, and 0.5 mg/g) of TO-NE for coating. At the same time, the decay loss rate and effective shelf life were also evaluated. This study revealed that polygalacturonase (PG) and pectinesterase (PME) activities were inhibited during the storage of papaya treated with 0.25 mg/g TO-NE coated compared to the control group. This resulted in the preservation of the firmness of papaya fruits, in addition to a higher ascorbic acid content, delayed total soluble solids (TSS) accumulation, and total chlorophyll content (TCC) degradation, with a lagging color change for two days. The respiration rate and ethylene production were suppressed, while the 0.25 mg/g TO-NE coated group at day 14 (ethylene peak) were 63.2 mg CO2 kg−1 h−1 and 7.3 µL kg−1 h−1, lower than control. The 0.25 mg/g TO-NE coating treatment significantly reduced the decay rate for 10 days of storage, preserving their appearance and facilitating ripening. This is a viable option for extending Tainung No.2 papaya shelf life. Graphical Abstract

Funder

Ministry of Agriculture, Taiwan, Republic of China, R.O.C.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3