Author:
Li Zhiru,Li Chao,Li Liyan,Yang Dong,Wang Shuangyue,Song Junmei,Jiang Muliang,Kang Min
Abstract
Abstract
Background
Treatment efficacy may differ among patients with nasopharyngeal carcinoma (NPC) at similar tumor–node–metastasis stages. Moreover, end-of-treatment tumor regression is a reliable indicator of treatment sensitivity. This study aimed to investigate whether quantitative dual-energy computed tomography (DECT) parameters could predict sensitivity to neck–lymph node radiotherapy in patients with NPC.
Methods
Overall, 388 lymph nodes were collected from 98 patients with NPC who underwent pretreatment DECT. The patients were divided into complete response (CR) and partial response (PR) groups. Clinical characteristics and quantitative DECT parameters were compared between the groups, and the optimal predictive ability of each parameter was determined using receiver operating characteristic (ROC) analysis. A nomogram prediction model was constructed and validated using univariate and binary logistic regression.
Results
DECT parameters were higher in the CR group than in the PR group. The iodine concentration (IC), normalized IC, Mix-0.6, spectral Hounsfield unit curve slope, effective atomic number, and virtual monoenergetic images were significantly different between the groups. The area under the ROC curve of the DECT parameters was 0.73–0.77. Based on the binary logistic regression, a column chart was constructed using 10 predictive factors, including age, sex, N stage, maximum lymph node diameter, arterial phase NIC, venous phase NIC, λHU and spectral Hounsfield units at 70 keV. The area under the ROC curve value of the constructed model was 0.813, with a sensitivity and specificity of 85.6% and 81.3%, respectively.
Conclusion
Quantitative DECT parameters could effectively predict the sensitivity of NPC to radiotherapy. Therefore, DECT parameters and NPC clinical features can be combined to construct a nomogram with high predictive power and used as a clinical analytical tool.
Funder
Medical research project of Chengdu Health Commission
Sichuan Medical Association Youth Innovation Research Project
the National Natural Science Foundation of China
The Research Foundation of the Science and Technology Department of Guangxi Province, China
The Research Foundation of the Science and Technology Department of Guangxi Province, China,
the Research Foundation of the Health Department of Guangxi Province, China
Publisher
Springer Science and Business Media LLC