Author:
van Kesteren Z.,Veldman J. K.,Parkes M. J.,Stevens M. F.,Balasupramaniam P.,van den Aardweg J. G.,van Tienhoven G.,Bel A.,van Dijk I. W. E. M.
Abstract
Abstract
Background
Due to respiratory motion, accurate radiotherapy delivery to thoracic and abdominal tumors is challenging. We aimed to quantify the ability of mechanical ventilation to reduce respiratory motion, by measuring diaphragm motion magnitudes in the same volunteers during free breathing (FB), mechanically regularized breathing (RB) at 22 breaths per minute (brpm), variation in mean diaphragm position across multiple deep inspiration breath-holds (DIBH) and diaphragm drift during single prolonged breath-holds (PBH) in two MRI sessions.
Methods
In two sessions, MRIs were acquired from fifteen healthy volunteers who were trained to be mechanically ventilated non-invasively We measured diaphragm motion amplitudes during FB and RB, the inter-quartile range (IQR) of the variation in average diaphragm position from one measurement over five consecutive DIBHs, and diaphragm cranial drift velocities during single PBHs from inhalation (PIBH) and exhalation (PEBH) breath-holds.
Results
RB significantly reduced the respiratory motion amplitude by 39%, from median (range) 20.9 (10.6–41.9) mm during FB to 12.8 (6.2–23.8) mm. The median IQR for variation in average diaphragm position over multiple DIBHs was 4.2 (1.0–23.6) mm. During single PIBHs with a median duration of 7.1 (2.0–11.1) minutes, the median diaphragm cranial drift velocity was 3.0 (0.4–6.5) mm/minute. For PEBH, the median duration was 5.8 (1.8–10.2) minutes with 4.4 (1.8–15.1) mm/minute diaphragm drift velocity.
Conclusions
Regularized breathing at a frequency of 22 brpm resulted in significantly smaller diaphragm motion amplitudes compared to free breathing. This would enable smaller treatment volumes in radiotherapy. Furthermore, prolonged breath-holding from inhalation and exhalation with median durations of six to seven minutes are feasible.
Trial registration
Medical Ethics Committee protocol NL.64693.018.18.
Funder
KWF Kankerbestrijding
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献