Low-dose cone-beam CT (LD-CBCT) reconstruction for image-guided radiation therapy (IGRT) by three-dimensional dual-dictionary learning

Author:

Song Ying,Zhang Weikang,Zhang Hong,Wang Qiang,Xiao Qing,Li Zhibing,Wei Xing,Lai Jialu,Wang Xuetao,Li Wan,Zhong Quan,Gong Pan,Zhong Renming,Zhao Jun

Abstract

Abstract Background To develop a low-dose cone beam CT (LD-CBCT) reconstruction method named simultaneous algebraic reconstruction technique and dual-dictionary learning (SART-DDL) joint algorithm for image guided radiation therapy (IGRT) and evaluate its imaging quality and clinical application ability. Methods In this retrospective study, 62 CBCT image sets from February 2018 to July 2018 at west china hospital were randomly collected from 42 head and neck patients (mean [standard deviation] age, 49.7 [11.4] years, 12 females and 30 males). All image sets were retrospectively reconstructed by SART-DDL (resultant D-CBCT image sets) with 18% less clinical raw projections. Reconstruction quality was evaluated by quantitative parameters compared with SART and Total Variation minimization (SART-TV) joint reconstruction algorithm with paired t test. Five-grade subjective grading evaluations were done by two oncologists in a blind manner compared with clinically used Feldkamp-Davis-Kress algorithm CBCT images (resultant F-CBCT image sets) and the grading results were compared by paired Wilcoxon rank test. Registration results between D-CBCT and F-CBCT were compared. D-CBCT image geometry fidelity was tested. Results The mean peak signal to noise ratio of D-CBCT was 1.7 dB higher than SART-TV reconstructions (P < .001, SART-DDL vs SART-TV, 36.36 ± 0.55 dB vs 34.68 ± 0.28 dB). All D-CBCT images were recognized as clinically acceptable without significant difference with F-CBCT in subjective grading (P > .05). In clinical registration, the maximum translational and rotational difference was 1.8 mm and 1.7 degree respectively. The horizontal, vertical and sagittal geometry fidelity of D-CBCT were acceptable. Conclusions The image quality, geometry fidelity and clinical application ability of D-CBCT are comparable to that of the F-CBCT for head-and-neck patients with 18% less projections by SART-DDL.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3