Deep learning in CT image segmentation of cervical cancer: a systematic review and meta-analysis

Author:

Yang Chongze,Qin Lan-hui,Xie Yu-en,Liao Jin-yuan

Abstract

Abstract Background This paper attempts to conduct a systematic review and meta-analysis of deep learning (DLs) models for cervical cancer CT image segmentation. Methods Relevant studies were systematically searched in PubMed, Embase, The Cochrane Library, and Web of science. The literature on DLs for cervical cancer CT image segmentation were included, a meta-analysis was performed on the dice similarity coefficient (DSC) of the segmentation results of the included DLs models. We also did subgroup analyses according to the size of the sample, type of segmentation (i.e., two dimensions and three dimensions), and three organs at risk (i.e., bladder, rectum, and femur). This study was registered in PROSPERO prior to initiation (CRD42022307071). Results A total of 1893 articles were retrieved and 14 articles were included in the meta-analysis. The pooled effect of DSC score of clinical target volume (CTV), bladder, rectum, femoral head were 0.86(95%CI 0.84 to 0.87), 0.91(95%CI 0.89 to 0.93), 0.83(95%CI 0.79 to 0.88), and 0.92(95%CI 0.91to 0.94), respectively. For the performance of segmented CTV by two dimensions (2D) and three dimensions (3D) model, the DSC score value for 2D model was 0.87 (95%CI 0.85 to 0.90), while the DSC score for 3D model was 0.85 (95%CI 0.82 to 0.87). As for the effect of the capacity of sample on segmentation performance, no matter whether the sample size is divided into two groups: greater than 100 and less than 100, or greater than 150 and less than 150, the results show no difference (P > 0.05). Four papers reported the time for segmentation from 15 s to 2 min. Conclusion DLs have good accuracy in automatic segmentation of CT images of cervical cancer with a less time consuming and have good prospects for future radiotherapy applications, but still need public high-quality databases and large-scale research verification.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review and research recommendations on artificial intelligence for automated cervical cancer detection;WIREs Data Mining and Knowledge Discovery;2024-07-15

2. Cervical cancer segmentation based on medical images: a literature review;Quantitative Imaging in Medicine and Surgery;2024-07

3. Advanced Cervical Lesion Detection using Deep Learning Techniques;2024 1st International Conference on Communications and Computer Science (InCCCS);2024-05-22

4. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review;Diagnostics;2024-04-30

5. EnsembleCAM: Unified Visualization for Explainable Cervical Cancer Identification;2024 International Research Conference on Smart Computing and Systems Engineering (SCSE);2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3