Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network

Author:

Wang Hesheng,Qu Tanxia,Bernstein Kenneth,Barbee David,Kondziolka Douglas

Abstract

Abstract Background Long-term follow-up using volumetric measurement could significantly assist in the management of vestibular schwannomas (VS). Manual segmentation of VS from MRI for treatment planning and follow-up assessment is labor-intensive and time-consuming. This study aims to develop a deep learning technique to fully automatically segment VS from MRI. Methods This study retrospectively analyzed MRI data of 737 patients who received gamma knife radiosurgery for VS. Treatment planning T1-weighted isotropic MR and manually contoured gross tumor volumes (GTV) were used for model development. A 3D convolutional neural network (CNN) was built on ResNet blocks. Spatial attenuation and deep supervision modules were integrated in each decoder level to enhance the training for the small tumor volume on brain MRI. The model was trained and tested on 587 and 150 patient data, respectively, from this institution (n = 495) and a publicly available dataset (n = 242). The model performance were assessed by the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), average symmetric surface (ASSD) and relative absolute volume difference (RAVD) of the model segmentation results against the GTVs. Results Measured on combined testing data from two institutions, the proposed method achieved mean DSC of 0.91 ± 0.08, ASSD of 0.3 ± 0.4 mm, HD95 of 1.3 ± 1.6 mm, and RAVD of 0.09 ± 0.15. The DSCs were 0.91 ± 0.09 and 0.92 ± 0.06 on 100 testing patients of this institution and 50 of the public data, respectively. Conclusions A CNN model was developed for fully automated segmentation of VS on T1-Weighted isotropic MRI. The model achieved good performance compared with physician clinical delineations on a sizeable dataset from two institutions. The proposed method potentially facilitates clinical workflow of radiosurgery for VS patient management.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3