Evaluation of in vitro antioxidant, anticancer activities and molecular docking studies of Capparis zeylanica Linn. leaves

Author:

Warake Ruturaj A.ORCID,Jarag Ravindra J.,Dhavale Rakesh P.,Jarag Rekha R.,Lohar Nikhil S.

Abstract

Abstract Background Capparis zeylanica Linn. leaf extract was subjected to phytochemical screening for the determination of antioxidant and anticancer activity on (MCF-7) human breast cancer cells. The phytoconstituents previously determined were subjected to molecular docking studies against human epidermal growth factor receptor 2 (HER2) protein as a target receptor to support antioxidant and anticancer activities. Results Powdered plant leaves were extracted by maceration method using ethyl acetate, chloroform, methanol, ethanol and distilled water. Preliminary phytochemical evaluation and total phenolic and flavonoid content of the extract were evaluated using biochemical tests. Total antioxidant capacity of the extract was evaluated using different assays. Anticancer potential of methanolic and ethanolic extracts was studied on human breast cancer cells. Molecular docking studies were performed to evaluate the binding interactions of phytoconstituents on HER2 protein using AutoDock Vina. Phytochemical evaluation confirmed the presence of saponins, flavonoids, tannins, phenols, carbohydrates and proteins. Ethanolic extract showed a maximum total phenolic and flavonoid content in support with antioxidant and anticancer activities. The ethanolic leaf extract showed 66.63% cell growth inhibition against MCF-7 cells. Molecular docking studies revealed the highest binding affinity (− 8.4 Kcal/mol) of α-amyrin followed by quercetin and β-carotene. Glucocapparin, syringic acid, vanillic acid and p-coumaric acid showed almost a similar binding affinity to the amino acid residues of HER2 protein as compared to 5-FU. Conclusion C. zeylanica leaf extract showed the presence of phenolic and flavonoid constituents responsible for antioxidant and in vitro anticancer activities. Molecular docking studies showed the binding affinity of phytoconstituents on targeted HER2 protein.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3