Author:
Xiao Jianfeng,Bastian Robert W,Perlmutter Joel S,Racette Brad A,Tabbal Samer D,Karimi Morvarid,Paniello Randal C,Blitzer Andrew,Batish Sat Dev,Wszolek Zbigniew K,Uitti Ryan J,Hedera Peter,Simon David K,Tarsy Daniel,Truong Daniel D,Frei Karen P,Pfeiffer Ronald F,Gong Suzhen,Zhao Yu,LeDoux Mark S
Abstract
Abstract
Background
Although the c.904_906delGAG mutation in Exon 5 of TOR1A typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A) has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify TOR1A Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia.
Methods
High resolution melting (HRM) was used to examine the entire TOR1A Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia) and 250 controls (150 neurologically normal and 100 with other movement disorders). Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia.
Results
HRM of TOR1A Exon 5 showed high (100%) diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the TOR1A ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1) a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2) an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia.
Conclusion
First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in TOR1A are rarely associated with non-generalized primary dystonia.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference55 articles.
1. Fahn S, Marsden CD, Calne DB: Classification and investigation of dystonia. Movement disorders 2. Edited by: Marsden CD, Fahn S. 1987, London: Butterworths, 332-358.
2. Fahn S: Concept and classification of dystonia. Adv Neurol. 1988, 50: 1-8.
3. Fahn S, Bressman SB, Marsden CD: Classification of dystonia. Adv Neurol. 1998, 78: 1-10.
4. Defazio G, Abbruzzese G, Livrea P, Berardelli A: Epidemiology of primary dystonia. Lancet Neurol. 2004, 3: 673-678. 10.1016/S1474-4422(04)00907-X.
5. Duane DD: Spasmodic torticollis: clinical and biologic features and their implications for focal dystonia. Adv Neurol. 1988, 50: 473-492.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献