Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components

Author:

Chalfant Madeleine1,Barber Karl W.23,Borah Sapan1,Thaller David1,Lusk C. Patrick1

Affiliation:

1. Department of Cell Biology, Yale University, New Haven, CT 06520

2. Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520

3. Systems Biology Institute, Yale University, West Haven, CT 06477

Abstract

DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3