Genotype-phenotype correlation in 22q11.2 deletion syndrome

Author:

Michaelovsky Elena,Frisch Amos,Carmel Miri,Patya Miriam,Zarchi Omer,Green Tamar,Basel-Vanagaite Lina,Weizman Abraham,Gothelf Doron

Abstract

Abstract Background The 22q11.2 deletion syndrome (22q11.2DS) is caused by hemizygous microdeletions on chromosome 22q11.2 with highly variable physical and neuropsychiatric manifestations. We explored the genotype-phenotype relationship in a relatively large 22q11.2DS cohort treated and monitored in our clinic using comprehensive clinical evaluation and detailed molecular characterization of the deletion. Methods Molecular analyses in 142 subjects with 22q11.2DS features were performed by FISH and MLPA methods. Participants underwent clinical assessment of physical symptoms and structured psychiatric and cognitive evaluation. Results Deletions were found in 110 individuals including one with an atypical nested distal deletion which was missed by the FISH test. Most subjects (88.2%) carried the 3Mb typically deleted region and 11.8% carried 4 types of deletions differing in size and location. No statistically significant genotype-phenotype correlations were found between deletion type and clinical data although some differences in hypocalcemia and cardiovascular anomalies were noted. Analysis of the patient with the distal nested deletion suggested a redundancy of genes causing the physical and neuropsychiatric phenotype in 22q11.2DS and indicating that the psychiatric and cognitive trajectories may be governed by different genes. Conclusions MLPA is a useful and affordable molecular method combining accurate diagnosis and detailed deletion characterization. Variations in deletion type and clinical manifestations impede the detection of significant differences in samples of moderate size, but analysis of individuals with unique deletions may provide insight into the underlying biological mechanisms. Future genotype-phenotype studies should involve large multicenter collaborations employing uniform clinical standards and high-resolution molecular methods.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3