Abstract
AbstractThe large, and increasing, number of chemical compounds poses challenges to the exploration of such datasets. In this work, we propose the usage of recommender systems to identify compounds of interest to scientific researchers. Our approach consists of a hybrid recommender model suitable for implicit feedback datasets and focused on retrieving a ranked list according to the relevance of the items. The model integrates collaborative-filtering algorithms for implicit feedback (Alternating Least Squares and Bayesian Personalized Ranking) and a new content-based algorithm, using the semantic similarity between the chemical compounds in the ChEBI ontology. The algorithms were assessed on an implicit dataset of chemical compounds, CheRM-20, with more than 16.000 items (chemical compounds). The hybrid model was able to improve the results of the collaborative-filtering algorithms, by more than ten percentage points in most of the assessed evaluation metrics.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献