Survey on Recommender Systems for Biomedical Items in Life and Health Sciences

Author:

Pato Matilde1ORCID,Barros Márcia2ORCID,Couto Francisco M.2ORCID

Affiliation:

1. FIT-ISEL, Departamento de Engenharia Electrónica e Telecomunicações e de Computadores, Portugal and LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

2. LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Abstract

The generation of biomedical data is of such magnitude that its retrieval and analysis have posed several challenges. A survey of recommender system (RS) approaches in biomedical fields is provided in this analysis, along with a discussion of existing challenges related to large-scale biomedical information retrieval systems. We collect original studies, identify entities and models, and discuss how knowledge graphs (KGs) can improve results. As a result, most of the papers used model-based collaborative filtering algorithms, most of the available datasets did not follow the standard format < user, item, rating >, and regarding qualitative evaluations of RSs use mainly classification metrics. Finally, we have assembled and coded a unique dataset of 60 papers — Sur-RS4BioT, available for download at DOI:10.34740/kaggle/ds/2346894

Funder

Deep Semantic Tagger

LASIGE Research Unit

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3