Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity

Author:

Playe BenoitORCID,Stoven VeroniqueORCID

Abstract

AbstractChemogenomics, also called proteochemometrics, covers a range of computational methods that can be used to predict protein–ligand interactions at large scales in the protein and chemical spaces. They differ from more classical ligand-based methods (also called QSAR) that predict ligands for a given protein receptor. In the context of drug discovery process, chemogenomics allows to tackle the question of predicting off-target proteins for drug candidates, one of the main causes of undesirable side-effects and failure within drugs development processes. The present study compares shallow and deep machine-learning approaches for chemogenomics, and explores data augmentation techniques for deep learning algorithms in chemogenomics. Shallow machine-learning algorithms rely on expert-based chemical and protein descriptors, while recent developments in deep learning algorithms enable to learn abstract numerical representations of molecular graphs and protein sequences, in order to optimise the performance of the prediction task. We first propose a formulation of chemogenomics with deep learning, called the chemogenomic neural network (CN), as a feed-forward neural network taking as input the combination of molecule and protein representations learnt by molecular graph and protein sequence encoders. We show that, on large datasets, the deep learning CN model outperforms state-of-the-art shallow methods, and competes with deep methods with expert-based descriptors. However, on small datasets, shallow methods present better prediction performance than deep learning methods. Then, we evaluate data augmentation techniques, namely multi-view and transfer learning, to improve the prediction performance of the chemogenomic neural network. We conclude that a promising research direction is to integrate heterogeneous sources of data such as auxiliary tasks for which large datasets are available, or independently, multiple molecule and protein attribute views.

Funder

Ministry of Industry of France

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3