Abstract
AbstractThis article describes Flame, an open source software for building predictive models and supporting their use in production environments. Flame is a web application with a web-based graphic interface, which can be used as a desktop application or installed in a server receiving requests from multiple users. Models can be built starting from any collection of biologically annotated chemical structures since the software supports structural normalization, molecular descriptor calculation, and machine learning model generation using predefined workflows. The model building workflow can be customized from the graphic interface, selecting the type of normalization, molecular descriptors, and machine learning algorithm to be used from a panel of state-of-the-art methods implemented natively. Moreover, Flame implements a mechanism allowing to extend its source code, adding unlimited model customization. Models generated with Flame can be easily exported, facilitating collaborative model development. All models are stored in a model repository supporting model versioning. Models are identified by unique model IDs and include detailed documentation formatted using widely accepted standards. The current version is the result of nearly 3 years of development in collaboration with users from the pharmaceutical industry within the IMI eTRANSAFE project, which aims, among other objectives, to develop high-quality predictive models based on shared legacy data for assessing the safety of drug candidates.
Funder
Horizon 2020
Seventh Framework Programme
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献