A Pilot Study on Proteomic Predictors of Mortality in Stable COPD

Author:

Enríquez-Rodríguez Cesar Jessé12ORCID,Casadevall Carme12ORCID,Faner Rosa23ORCID,Pascual-Guardia Sergi12ORCID,Castro-Acosta Ady24,López-Campos José Luis25,Peces-Barba Germán26ORCID,Seijo Luis267,Caguana-Vélez Oswaldo Antonio12ORCID,Monsó Eduard28,Rodríguez-Chiaradia Diego12ORCID,Barreiro Esther12,Cosío Borja G.29ORCID,Agustí Alvar23,Gea Joaquim12,

Affiliation:

1. Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain

2. Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain

3. Servei de Pneumologia (Institut Clínic de Respiratori), Hospital Clínic—Fundació Clínic per la Recerca Biomèdica, Universitat de Barcelona, 08907 Barcelona, Spain

4. Respiratory Medicine Department, Hospital 12 de Octubre, 28041 Madrid, Spain

5. Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, 41012 Sevilla, Spain

6. Respiratory Medicine Department, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain

7. Respiratory Medicine Department, Clínica Universidad de Navarra, 31008 Madrid, Spain

8. Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, 08193 Sabadell, Spain

9. Respiratory Medicine Department, Hospital Son Espases—Instituto de Investigación Sanitaria de Palma (IdISBa), Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of global mortality. Despite clinical predictors (age, severity, comorbidities, etc.) being established, proteomics offers comprehensive biological profiling to obtain deeper insights into COPD pathophysiology and survival prognoses. This pilot study aimed to identify proteomic footprints that could be potentially useful in predicting mortality in stable COPD patients. Plasma samples from 40 patients were subjected to both blind (liquid chromatography–mass spectrometry) and hypothesis-driven (multiplex immunoassays) proteomic analyses supported by artificial intelligence (AI) before a 4-year clinical follow-up. Among the 34 patients whose survival status was confirmed (mean age 69 ± 9 years, 29.5% women, FEV1 42 ± 15.3% ref.), 32% were dead in the fourth year. The analysis identified 363 proteins/peptides, with 31 showing significant differences between the survivors and non-survivors. These proteins predominantly belonged to different aspects of the immune response (12 proteins), hemostasis (9), and proinflammatory cytokines (5). The predictive modeling achieved excellent accuracy for mortality (90%) but a weaker performance for days of survival (Q2 0.18), improving mildly with AI-mediated blind selection of proteins (accuracy of 95%, Q2 of 0.52). Further stratification by protein groups highlighted the predictive value for mortality of either hemostasis or pro-inflammatory markers alone (accuracies of 95 and 89%, respectively). Therefore, stable COPD patients’ proteomic footprints can effectively forecast 4-year mortality, emphasizing the role of inflammatory, immune, and cardiovascular events. Future applications may enhance the prognostic precision and guide preventive interventions.

Funder

Spanish Ministerio de Economía y Competitividad

Instituto de Salud Carlos III

SEPAR

FUCAP

SOCAP

Menarini Spain

European Union

Publisher

MDPI AG

Reference106 articles.

1. WHO (2024, July 19). COPD Factsheet. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd).

2. (2024, July 19). Global Initiative for Chronic Obstructive Lung Disease Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report). Available online: www.goldcopd.org.

3. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal;Celli;Am. J. Respir. Crit. Care Med.,2021

4. Predictors of mortality in patients with stable COPD;Esteban;J. Gen. Intern. Med.,2008

5. Dyspnea Is a Better Predictor of 5-Year Survival Than Airway Obstruction in Patients with COPD;Nishimura;Chest,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3