Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation

Author:

Thomas Morgan,O’Boyle Noel M.,Bender Andreas,de Graaf Chris

Abstract

AbstractA plethora of AI-based techniques now exists to conduct de novo molecule generation that can devise molecules conditioned towards a particular endpoint in the context of drug design. One popular approach is using reinforcement learning to update a recurrent neural network or language-based de novo molecule generator. However, reinforcement learning can be inefficient, sometimes requiring up to 105 molecules to be sampled to optimize more complex objectives, which poses a limitation when using computationally expensive scoring functions like docking or computer-aided synthesis planning models. In this work, we propose a reinforcement learning strategy called Augmented Hill-Climb based on a simple, hypothesis-driven hybrid between REINVENT and Hill-Climb that improves sample-efficiency by addressing the limitations of both currently used strategies. We compare its ability to optimize several docking tasks with REINVENT and benchmark this strategy against other commonly used reinforcement learning strategies including REINFORCE, REINVENT (version 1 and 2), Hill-Climb and best agent reminder. We find that optimization ability is improved ~ 1.5-fold and sample-efficiency is improved ~ 45-fold compared to REINVENT while still delivering appealing chemistry as output. Diversity filters were used, and their parameters were tuned to overcome observed failure modes that take advantage of certain diversity filter configurations. We find that Augmented Hill-Climb outperforms the other reinforcement learning strategies used on six tasks, especially in the early stages of training or for more difficult objectives. Lastly, we show improved performance not only on recurrent neural networks but also on a reinforcement learning stabilized transformer architecture. Overall, we show that Augmented Hill-Climb improves sample-efficiency for language-based de novo molecule generation conditioning via reinforcement learning, compared to the current state-of-the-art. This makes more computationally expensive scoring functions, such as docking, more accessible on a relevant timescale.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3