Author:
Ucak Umit V.,Ashyrmamatov Islambek,Lee Juyong
Abstract
AbstractTokenization is an important preprocessing step in natural language processing that may have a significant influence on prediction quality. This research showed that the traditional SMILES tokenization has a certain limitation that results in tokens failing to reflect the true nature of molecules. To address this issue, we developed the atom-in-SMILES tokenization scheme that eliminates ambiguities in the generic nature of SMILES tokens. Our results in multiple chemical translation and molecular property prediction tasks demonstrate that proper tokenization has a significant impact on prediction quality. In terms of prediction accuracy and token degeneration, atom-in-SMILES is more effective method in generating higher-quality SMILES sequences from AI-based chemical models compared to other tokenization and representation schemes. We investigated the degrees of token degeneration of various schemes and analyzed their adverse effects on prediction quality. Additionally, token-level repetitions were quantified, and generated examples were incorporated for qualitative examination. We believe that the atom-in-SMILES tokenization has a great potential to be adopted by broad related scientific communities, as it provides chemically accurate, tailor-made tokens for molecular property prediction, chemical translation, and molecular generative models.
Funder
Korea Environmental Industry and Technology Institute
Ministry of Education
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献