Representations of lipid nanoparticles using large language models for transfection efficiency prediction

Author:

Moayedpour Saeed1ORCID,Broadbent Jonathan2,Riahi Saleh1,Bailey Michael1,V. Thu Hoa3,Dobchev Dimitar4,Balsubramani Akshay5,N.D. Santos Ricardo4,Kogler-Anele Lorenzo2,Corrochano-Navarro Alejandro1,Li Sizhen1,U. Montoya Fernando4,Agarwal Vikram5,Bar-Joseph Ziv1,Jager Sven1

Affiliation:

1. Digital R&D, Sanofi , Cambridge, MA, 02141, United States

2. Digital R&D, Sanofi , Toronto, ON, M5V 1V6, Canada

3. DataSentics , Brno 602 00, Czech Republic

4. mRNA Center of Excellence, Marcy L’Etoile , Sanofi, 69280, France

5. mRNA Center of Excellence, Sanofi , Waltham, MA, 02451, United States

Abstract

Abstract Motivation Lipid nanoparticles (LNPs) are the most widely used vehicles for mRNA vaccine delivery. The structure of the lipids composing the LNPs can have a major impact on the effectiveness of the mRNA payload. Several properties should be optimized to improve delivery and expression including biodegradability, synthetic accessibility, and transfection efficiency. Results To optimize LNPs, we developed and tested models that enable the virtual screening of LNPs with high transfection efficiency. Our best method uses the lipid Simplified Molecular-Input Line-Entry System (SMILES) as inputs to a large language model. Large language model-generated embeddings are then used by a downstream gradient-boosting classifier. As we show, our method can more accurately predict lipid properties, which could lead to higher efficiency and reduced experimental time and costs. Availability and implementation Code and data links available at: https://github.com/Sanofi-Public/LipoBART.

Funder

Sanofi

Publisher

Oxford University Press (OUP)

Reference36 articles.

1. The SwissLipids knowledgebase for lipid biology;Aimo;Bioinformatics,2015

2. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine;Baden;N Engl J Med,2021

3. Quantifying lipid nanoparticle-mediated GFP expression in the murine retina;Curtis;Invest Ophthalmol Vis Sci,2023

4. Erythropoietin-loaded solid lipid nanoparticles: preparation, optimization, and in vivo evaluation;Dara;Colloids Surf B Biointerfaces,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3