Human Parathyroid Hormone (1–34) accelerates skin wound healing through inducing cell migration via up-regulating the expression of Rac1

Author:

Sun Qingpeng,Zhou Liya,Yu Zhiyong,Zhang Jun,Zhang Chao,Pi Honglin

Abstract

AbstractDelayed wound healing is a public issue that imposes a significant burden on both society and the patients themselves. To date, although numerous methods have been developed to accelerate the speed of wound closure, the therapeutic effects are partially limited due to the complex procedures, high costs, potential side effects, and ethical concerns. While some studies have reported that the in-vivo application of Human Parathyroid Hormone (1–34) (hPTH(1–34)) promotes the wound-healing process, the definitive role and underlying mechanisms through which it regulates the behavior of fibroblasts and keratinocytes remains unclear. Herein, hPTH(1–34)’s role in cell migration is evaluated with a series of in-vitro and in-vivo studies, whereby hPTH(1–34)’s underlying mechanism in activating the two types of cells was detected. The in-vitro study revealed that hPTH(1–34) enhanced the migration of both fibroblasts and HaCaT cells. Ras-associated C3 botulinum toxin subunit 1 (Rac1), a classical member of the Rho family, was upregulated in hPTH(1–34)-treated fibroblasts and HaCaT cells. Further study by silencing the expression of Rac1 with siRNA reversed the hPTH(1–34)-enhanced cell migration, thus confirming that Rac1 was involved in hPTH(1–34)-induced cell behavior. In-vivo study on rat wound models confirmed the effects of hPTH(1–34) on fibroblasts and keratinocytes, with increased collagen deposition, fibroblasts accumulation, and Rac1 expression in the hPTH(1–34)-treated wounds. In summary, the present study demonstrated that hPTH(1–34) accelerated wound healing through enhancing the migration of cells through the up-regulation of Rac1 expression.

Funder

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3