Author:
Sun Jiacheng,Shen Han,Shao Lianbo,Teng Xiaomei,Chen Yueqiu,Liu Xuan,Yang Ziying,Shen Zhenya
Abstract
Abstract
Background
Myocardial infarction (MI) is a severe disease that often associated with dysfunction of angiogenesis. Cell-based therapies for MI using mesenchymal stem cell (MSC)-derived exosomes have been well studied due to their strong proangiogenic effect. Genetic modification is one of the most common methods to enhance exosome therapy. This study investigated the proangiogenic and cardioprotective effect of exosomes derived from hypoxia-inducible factor 1-alpha (HIF-1α)-modified MSCs.
Methods
Lentivirus containing HIF-1α overexpressing vector was packaged and used to infect MSCs. Exosomes were isolated from MSC-conditioned medium by ultracentrifugation. Human umbilical vein endothelial cells (HUVECs) were treated under hypoxia condition for 48 h co-cultured with PBS, control exosomes, or HIF-1α-overexpressed exosomes, respectively. Then the preconditioned HUVECs were subjected to tube formation assay, Transwell assay, and EdU assay to evaluate the protective effect of exosomes. Meanwhile, mRNA and secretion levels of proangiogenic factors were measured by RT-qPCR and ELISA assays. In vivo assays were conducted using the rat myocardial infarction model. PBS, control exosomes, or HIF-1α-overexpressed exosomes were injected through tail vein after MI surgery. Heart function was assessed by echocardiography at days 3, 14, and 28. At day 7, mRNA and protein expression levels of proangiogenic factors in the peri-infarction area and circulation were evaluated, respectively. At day 28, hearts were collected and subjected to H&E staining, Masson’s trichrome staining, and immunofluorescent staining.
Results
HIF-1α-overexpressed exosomes rescued the impaired angiogenic ability, migratory function, and proliferation of hypoxia-injured HUVECs. Simultaneously, HIF-1α-overexpressed exosomes preserved heart function by promoting neovessel formation and inhibiting fibrosis in the rat MI model. In addition, both in vitro and in vivo proangiogenic factors mRNA and protein expression levels were elevated after HIF-1α-overexpressed exosome application.
Conclusion
HIF-1α-overexpressed exosomes could rescue the impaired angiogenic ability, migration, and proliferation of hypoxia-pretreated HUVECs in vitro and mediate cardioprotection by upregulating proangiogenic factors and enhancing neovessel formation.
Funder
National Natural Science Foundation of China
Introduction Project of Clinical Medicine Expert Team for Suzhou
National Clinical Key Specialty of Cardiovascular Surgery
Jiangsu Clinical Research Center for Cardiovascular Surgery
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference40 articles.
1. Mozaffarian D, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
2. Jia SD, et al. Two-year outcomes after left main coronary artery percutaneous coronary intervention in patients presenting with acute coronary syndrome. J Interv Cardiol. 2020;2020:6980324.
3. Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 2020;77(2):253-65. https://doi.org/10.1007/s00018-019-03268-1.
4. Chen Z, et al. Functionally improved mesenchymal stem cells to better treat myocardial infarction. Stem Cells Int. 2018;2018:7045245.
5. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8):923–40.
Cited by
168 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献