3D-Cultured MC3T3-E1-Derived Exosomes Promote Endothelial Cell Biological Function under the Effect of LIPUS

Author:

Liu Xiaohan12,Cheng Rui12ORCID,Cao Hongjuan12,Wu Lin12ORCID

Affiliation:

1. Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China

2. Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China

Abstract

Porous Ti-6Al-4V scaffold materials can be used to heal massive bone defects because they can provide space for vascularisation and bone formation. During new bone tissue development, rapid vascular ingrowth into scaffold materials is very important. Osteoblast-derived exosomes are capable of facilitating angiogenesis–osteogenesis coupling. Low-intensity pulsed ultrasound (LIPUS) is a physical therapy modality widely utilised in the field of bone regeneration and has been proven to enhance the production and functionality of exosomes on two-dimensional surfaces. The impact of LIPUS on exosomes derived from osteoblasts cultured in three dimensions remains to be elucidated. In this study, exosomes produced by osteoblasts on porous Ti-6Al-4V scaffold materials under LIPUS and non-ultrasound stimulated conditions were co-cultured with endothelial cells. The findings indicated that the exosomes were consistently and stably taken up by the endothelial cells. Compared to the non-ultrasound group, the LIPUS group facilitated endothelial cell proliferation and angiogenesis. After 24 h of co-culture, the migration ability of endothelial cells in the LIPUS group was 17.30% higher relative to the non-ultrasound group. LIPUS may represent a potentially viable strategy to promote the efficacy of osteoblast-derived exosomes to enhance the angiogenesis of porous Ti-6Al-4V scaffold materials.

Funder

National Natural Science Foundation of China

Project of Liaoning Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3