Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro

Author:

Agboola Oluwafemi Solomon,Hu Xinglin,Shan Zhiyan,Wu YanshuangORCID,Lei Lei

Abstract

Abstract The study of human brain physiology, including cellular interactions in normal and disease conditions, has been a challenge due to its complexity and unavailability. Induced pluripotent stem cell (iPSC) study is indispensable in the study of the pathophysiology of neurological disorders. Nevertheless, monolayer systems lack the cytoarchitecture necessary for cellular interactions and neurological disease modeling. Brain organoids generated from human pluripotent stem cells supply an ideal environment to model both cellular interactions and pathophysiology of the human brain. This review article discusses the composition and interactions among neural lineage and non-central nervous system cell types in brain organoids, current studies, and future perspectives in brain organoid research. Ultimately, the promise of brain organoids is to unveil previously inaccessible features of neurobiology that emerge from complex cellular interactions and to improve our mechanistic understanding of neural development and diseases. Graphical abstract

Funder

Natural Science Foundation of Heilongjiang Province

Heilongjiang Postdoctoral Foundation

National Natural Science foundation of China

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microinstrumentation for Brain Organoids;Advanced Healthcare Materials;2024-01-26

2. Disentangling tau: One protein, many therapeutic approaches;Neurotherapeutics;2024-01

3. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models;International Journal of Molecular Sciences;2023-07-27

4. An ontological approach to the ethical issues of human cerebral organoids;Molecular Psychology: Brain, Behavior, and Society;2023-07-13

5. Microenvironments Matter: Advances in Brain-on-Chip;Biosensors;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3