Image-based crosstalk analysis of cell–cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip

Author:

Sano Takanori,Nakajima Tadaaki,Senda Koharu Alicia,Nakano Shizuka,Yamato Mizuho,Ikeda Yukinori,Zeng Hedele,Kawabe Jun-ichi,Matsunaga Yukiko T.ORCID

Abstract

Abstract Background Sprouting angiogenesis is an important mechanism for morphogenetic phenomena, including organ development, wound healing, and tissue regeneration. In regenerative medicine, therapeutic angiogenesis is a clinical solution for recovery from ischemic diseases. Mesenchymal stem cells (MSCs) have been clinically used given their pro-angiogenic effects. MSCs are reported to promote angiogenesis by differentiating into pericytes or other vascular cells or through cell–cell communication using multiple protein–protein interactions. However, how MSCs physically contact and move around ECs to keep the sprouting angiogenesis active remains unknown. Methods We proposed a novel framework of EC–MSC crosstalk analysis using human umbilical vein endothelial cells (HUVECs) and MSCs obtained from mice subcutaneous adipose tissue on a 3D in vitro model, microvessel-on-a-chip, which allows cell-to-tissue level study. The microvessels were fabricated and cultured for 10 days in a collagen matrix where MSCs were embedded. Results Immunofluorescence imaging using a confocal laser microscope showed that MSCs smoothed the surface of the microvessel and elongated the angiogenic sprouts by binding to the microvessel’s specific microstructures. Additionally, three-dimensional modeling of HUVEC–MSC intersections revealed that MSCs were selectively located around protrusions or roots of angiogenic sprouts, whose surface curvature was excessively low or high, respectively. Conclusions The combination of our microvessel-on-a-chip system for 3D co-culture and image-based crosstalk analysis demonstrated that MSCs are selectively localized to concave–convex surfaces on scaffold structures and that they are responsible for the activation and stabilization of capillary vessels.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3