Resolvin E1 accelerates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells

Author:

Chen Jie,Xu Huaxing,Xia Kun,Cheng Shuhua,Zhang QiORCID

Abstract

Abstract Background Unresolved inflammation and tissue destruction are considered to underlie the failure of dental pulp repair. As key mediators of the injury response, dental pulp stem cells (DPSCs) play a critical role in pulp tissue repair and regeneration. Resolvin E1 (RvE1), a major dietary omega-3 polyunsaturated fatty-acid metabolite, is effective in resolving inflammation and activating wound healing. However, whether RvE1 facilitates injured pulp-tissue repair and regeneration through timely resolution of inflammation and rapid mobilization of DPSCs is unknown. Therefore, we established a pulp injury model and investigated the effects of RvE1 on DPSC-mediated inflammation resolution and injured pulp repair. Methods A pulp injury model was established using 8-week-old Sprague-Dawley rats. Animals were sacrificed on days 1, 3, 7, 14, 21, and 28 after pulp capping with a collagen sponge immersed in PBS with RvE1 or PBS. Hematoxylin-eosin and Masson’s trichrome staining, immunohistochemistry, and immunohistofluorescence were used to evaluate the prohealing properties of RvE1. hDPSCs were incubated with lipopolysaccharide (LPS) to induce an inflammatory response, and the expression of inflammatory factors after RvE1 application was measured. Effects of RvE1 on hDPSC proliferation, chemotaxis, and odontogenic differentiation were evaluated by CCK-8 assay, transwell assay, alkaline phosphatase (ALP) staining, alizarin red staining, and quantitative PCR, and possible signaling pathways were explored using western blotting. Results In vivo, RvE1 reduced the necrosis rate of damaged pulp and preserved more vital pulps, and promoted injured pulp repair and reparative dentin formation. Further, it enhanced dentin matrix protein 1 and dentin sialoprotein expression and accelerated pulp inflammation resolution by suppressing TNF-α and IL-1β expression. RvE1 enhanced the recruitment of CD146+ and CD105+ DPSCs to the damaged molar pulp mesenchyme. Isolated primary cells exhibited the mesenchymal stem cell immunophenotype and differentiation. RvE1 promoted hDPSC proliferation and chemotaxis. RvE1 significantly attenuated pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and enhanced ALP activity, nodule mineralization, and especially, expression of the odontogenesis-related genes DMP1, DSPP, and BSP in LPS-stimulated DPSCs. RvE1 regulated AKT, ERK, and rS6 phosphorylation in LPS-stimulated DPSCs. Conclusions RvE1 promotes pulp inflammation resolution and dentin regeneration and positively influences the proliferation, chemotaxis, and differentiation of LPS-stimulated hDPSCs. This response is, at least partially, dependent on AKT, ERK, and rS6-associated signaling in the inflammatory microenvironment. RvE1 has promising application potential in regenerative endodontics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3