Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the Survival and Function of Neutrophils

Author:

Cassatella Marco A.1,Mosna Federico2,Micheletti Alessandra1,Lisi Veronica2,Tamassia Nicola1,Cont Caterina2,Calzetti Federica1,Pelletier Martin1,Pizzolo Giovanni2,Krampera Mauro2

Affiliation:

1. Section of General Pathology, Department of Pathology and Diagnostic, University of Verona, Italy

2. Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy

Abstract

Abstract Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are stromal precursors endowed with extensive immunomodulative properties. In this study, we aimed to assess whether Toll-like receptor-3 (TLR3)- and TLR4-activated BM-MSC influence human neutrophil (PMN) responses under coculture conditions. We show that TLR3 triggering by polyinosinic:polycytidylic acid dramatically amplifies, in a more significant manner than TLR4 triggering by lipopolysaccharide, the antiapoptotic effects that resting BM-MSC constitutively exert on PMN under coculture conditions, preserving a significant fraction of viable and functional PMN up to 72 hours. In addition, TLR3- and TLR4-activated BM-MSC enhance respiratory burst ability and CD11b expression by PMN. The coculture in the absence of cell contact and the incubation of PMN in supernatants harvested from TLR3- and TLR4-activated BM-MSC yield comparable results in terms of increased survival and immunophenotypic changes, thus suggesting the involvement of endogenous soluble factors. Neutralizing experiments reveal that the biological effects exerted on PMN by TLR3-activated BM-MSC are mediated by the combined action of interleukin 6, interferon-β (IFN-β), and granulocyte macrophage colony-stimulating factor (GM-CSF), while those exerted by TLR4-activated BM-MSC mostly depend on GM-CSF. MSC isolated from thymus, spleen, and subcutaneous adipose tissue behaves similarly. Finally, the effects exerted by TLR3- or TLR4-stimulated BM-MSC on PMN are conserved even after the previous priming of BM-MSC with IFN-γ and tumor necrosis factor-α. Our data highlight a novel mechanism by which MSC sustain and amplify the functions of PMN in response to TLR3- and TLR4-triggering and may consequently contribute to inflammatory disorders.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3