Small extracellular vesicles from human adipose-derived mesenchymal stromal cells: a potential promoter of fat graft survival

Author:

Chen Aizhen,Tang Shijie,He Jiawei,Li Xiangyu,Peng Guohao,Zhang Haoruo,Chen Jinghua,Chen Liangwan,Chen XiaosongORCID

Abstract

Abstract Background Small extracellular vesicles (sEVs) with genetic information secreted by cells play a crucial role in the cellular microenvironment. In this study, our purpose is to explore the characteristics of the small extracellular vesicles of human adipose-derived mesenchymal stromal cells (hADMSC-sEVs) and studied the role of hADMSC-sEVs in improving the survival rate of grafted fat. Methods In the present study, we used the transmission electron microscopy, nano-tracking analysis, nanoflow surface protein analysis, and zeta potential value to identify sEVs. SEVs’ trajectory was traced dynamically to verify whether hADMSC-sEVs can be internalized into human umbilical vein endothelial cells (HUVECs) in vitro at different times. The angiogenic property of hADMSC-sEVs was observed by measuring the volume, weight, and histological analysis of the grafted fats in nude mouse models. Results Our research showed that the hADMSC-sEVs were sEVs with double-layer membrane structure and the diameter of which is within 30–150 nm. hADMSC-sEVs exert biological influence mainly through internalization into cells. Compared with the control group, the hADMSC-sEVs group had a significantly higher survival rate of grafted fat, morphological integrity, and a lower degree of inflammation and fibrosis. And immunohistochemistry showed that hADMSC-sEVs significantly increased the neovascularisation and the expression of CD34, VEGFR2, and Ki-67 in the graft tissue. Conclusions As a potential nanomaterial, hADMSC-sEVs have been explored in the field of cell-free application of stem cell technology. hADMSC-sEVs promoted the survival of grafted fats by promoting the formation of new blood vessels, which is another promising progress in the field of regenerative medicine. We believe that hADMSC-sEVs will have a broad application prospect in the field of regenerative medicine in the future.

Funder

National Natural Science Foundation of China

Joint Funding Project of Science and Technology Innovation in Fujian Province

Special Financial Funds of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3