Extracellular Vesicles Derived From Hypoxia-Treated Human Adipose Stem Cells Increase Proliferation and Angiogenic Differentiation in Human Adipose Stem Cells

Author:

Li Wei,Chen Xu,Zou Feng,He Xiaotong

Abstract

Abstract Background Adipose-derived stem cells (ADSCs) are crucial in cell-assisted lipotransfer (CAL). ADSC-derived exosomes could improve the survival of CAL. Almost all relevant research now ignores ADSCs in favor of studying the proangiogenic potential of extracellular vesicles (EVs) on human umbilical vein endothelial cells (HUVECs). Objectives Given the significance of ADSCs in CAL, the authors sought to verify that EVs from ADSCs under hypoxia treatment can enhance the angiogenic potential of ADSCs. Methods EVs were harvested from human ADSCs (hADSCs) under normoxia and hypoxia. A Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of hADSCs. By examining the expression of CD31, vascular endothelial growth factor receptor 2, and vascular endothelial growth factor, the pro-angiogenic differentiation potential was assessed. Moreover, a tube formation experiment was carried out to evaluate the pro-angiogenic differentiation potential. Results Hypoxic EVs showed more significant pro-proliferative and pro-angiogenic potential. Angiogenesis was more vigorous in hADSCs treated with hypoxic EVs than in those treated with nomorxic EVs. The hADSCs treated with hypoxic EVs expressed higher angiogenic markers, according to real-time polymerase chain reaction (RT-PCR) and Western blot analysis, which revealed more angiogenic marker expression in hypoxic EV–treated hADSCs. The same result was demonstrated by tube formation on Matrigel in vitro. Conclusions Hypoxic EVs significantly increased the proliferation and angiogenic differentiation potential of hADSCs. Hypoxic EV–treated ADSCs may be beneficial to CAL and prevascularized tissue-engineered constructs.

Funder

Changzhou Municipal Health Commission

Youth Talent Project

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3