Targeted expression profiling reveals distinct stages of early canine fibroblast reprogramming are regulated by 2-oxoglutarate hydroxylases

Author:

Tobias Ian C.,Kao Mian-Mian C.,Parmentier Thomas,Hunter Hailey,LaMarre Jonathan,Betts Dean H.ORCID

Abstract

Abstract Background Ectopic expression of a defined set of transcription factors allows the reprogramming of mammalian somatic cells to pluripotency. Despite continuous progress in primate and rodent reprogramming, limited attention has been paid to cell reprogramming in domestic and companion species. Previous studies attempting to reprogram canine cells have mostly assessed a small number of presumptive canine induced pluripotent stem cell (iPSC) lines for generic pluripotency attributes. However, why canine cell reprogramming remains extremely inefficient is poorly understood. Methods To better characterize the initial steps of pluripotency induction in canine somatic cells, we optimized an experimental system where canine fetal fibroblasts (cFFs) are transduced with the Yamanaka reprogramming factors by Sendai virus vectors. We use quantitative PCR arrays to measure the expression of 80 target genes at various stages of canine cell reprogramming. We ask how cFF reprogramming is influenced by small molecules affecting the epigenomic modification 5-hydroxymethylcytosine, specifically L-ascorbic acid and retinoic acid (AA/RA). Results We found that the expression and catalytic output of a class of 2-oxoglutarate-dependent (2-OG) hydroxylases, known as ten-eleven translocation (TET) enzymes, can be modulated in canine cells treated with AA/RA. We further show that AA/RA treatment induces TET1 expression and facilitates early canine reprogramming, evidenced by upregulation of epithelial and pluripotency markers. Using a chemical inhibitor of 2-OG hydroxylases, we demonstrate that 2-OG hydroxylase activity regulates the expression of a subset of genes involved in mesenchymal-to-epithelial transition (MET) and pluripotency in early canine reprogramming. We identify a set of transcription factors depleted in maturing reprogramming intermediates compared to pluripotent canine embryonic stem cells. Conclusions Our findings highlight 2-OG hydroxylases have evolutionarily conserved and divergent functions regulating the early reprogramming of canine somatic cells and show reprogramming conditions can be rationally optimized for the generation of maturing canine iPSC.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3