Efficient isolation of human gingival stem cells in a new serum-free medium supplemented with platelet lysate and growth hormone for osteogenic differentiation enhancement

Author:

Taihi IhsèneORCID,Pilon Caroline,Cohen José,Berdal Ariane,Gogly Bruno,Nassif Ali,Fournier Benjamin Philippe

Abstract

Abstract Background The use of distant autografts to restore maxillary bone defects is clinically challenging and has unpredictable outcomes. This variation may be explained by the embryonic origin of long bone donor sites, which are derived from mesoderm, whereas maxillary bones derive from neural crest. Gingival stem cells share the same embryonic origin as maxillary bones. Their stemness potential and ease of access have been repeatedly shown. One limitation in human cell therapy is the use of foetal calf serum during cell isolation and culture. To overcome this problem, a new serum-free medium enriched with an alternative to foetal calf serum, i.e., platelet lysate, needs to be adapted to clinical grade protocols. Methods Different serum-free media enriched with platelet lysate at various concentrations and supplemented with different growth factors were developed and compared to media containing foetal calf serum. Phenotypic markers, spontaneous DNA damage, and stem cell properties of gingival stem cells isolated in platelet lysate or in foetal calf serum were also compared, as were the immunomodulatory properties of the cells by co-culturing them with activated peripheral blood monocellular cells. T-cell proliferation and phenotype were also assessed by flow cytometry using cell proliferation dye and specific surface markers. Data were analysed with t-test for two-group comparisons, one-way ANOVA for multigroup comparisons and two-way ANOVA for repeated measures and multigroup comparisons. Results Serum-free medium enriched with 10% platelet lysate and growth hormone yielded the highest expansion rate. Gingival stem cell isolation and thawing under these conditions were successful, and no significant DNA lesions were detected. Phenotypic markers of mesenchymal stem cells and differentiation capacities were conserved. Gingival stem cells isolated in this new serum-free medium showed higher osteogenic differentiation potential compared to cells isolated in foetal calf serum. The proportion of regulatory T cells obtained by co-culturing gingival stem cells with activated peripheral blood monocellular cells was similar between the two types of media. Conclusions This new serum-free medium is well suited for gingival stem cell isolation and proliferation, enhances osteogenic capacity and maintains immunomodulatory properties. It may allow the use of gingival stem cells in human cell therapy for bone regeneration in accordance with good manufacturing practice guidelines.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3