Retinoic acid inhibits the angiogenesis of human embryonic stem cell-derived endothelial cells by activating FBP1-mediated gluconeogenesis
-
Published:2022-06-07
Issue:1
Volume:13
Page:
-
ISSN:1757-6512
-
Container-title:Stem Cell Research & Therapy
-
language:en
-
Short-container-title:Stem Cell Res Ther
Author:
Yang Zhuangzhuang, Yu Miao, Li Xuechun, Tu Yuanyuan, Wang Chunyan, Lei Wei, Song Min, Wang Yong, Huang Ying, Ding Fengyue, Hao Kaili, Han Xinglong, Ni Xuan, Qu Lina, Shen Zhenya, Hu ShijunORCID
Abstract
Abstract
Background
Endothelial cells are located in the inner lumen of blood and lymphatic vessels and exhibit the capacity to form new vessel branches from existing vessels through a process called angiogenesis. This process is energy intensive and tightly regulated. Glycolysis is the main energy source for angiogenesis. Retinoic acid (RA) is an active metabolite of vitamin A and exerts biological effects through its receptor retinoic acid receptor (RAR). In the clinic, RA is used to treat acne vulgaris and acute promyelocytic leukemia. Emerging evidence suggests that RA is involved in the formation of the vasculature; however, its effect on endothelial cell angiogenesis and metabolism is unclear.
Methods
Our study was designed to clarify the abovementioned effect with human embryonic stem cell-derived endothelial cells (hESC-ECs) employed as a cell model.
Results
We found that RA inhibits angiogenesis, as manifested by decreased proliferation, migration and sprouting activity. RNA sequencing revealed general suppression of glycometabolism in hESC-ECs in response to RA, consistent with the decreased glycolytic activity and glucose uptake. After screening glycometabolism-related genes, we found that fructose-1,6-bisphosphatase 1 (FBP1), a key rate-limiting enzyme in gluconeogenesis, was significantly upregulated after RA treatment. After silencing or pharmacological inhibition of FBP1 in hESC-ECs, the capacity for angiogenesis was enhanced, and the inhibitory effect of RA was reversed. ChIP-PCR demonstrated that FBP1 is a target gene of RAR. When hESC-ECs were treated with the RAR inhibitor BMS493, FBP1 expression was decreased and the effect of RA on angiogenesis was partially blocked.
Conclusions
The inhibitory role of RA in glycometabolism and angiogenesis is RAR/FBP1 dependent, and FBP1 may be a novel therapeutic target for pathological angiogenesis.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference35 articles.
1. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64. https://doi.org/10.1016/j.cell.2019.01.021. 2. Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13:333–49. https://doi.org/10.1038/nrcardio.2016.36. 3. Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, Tian Z, Wei H. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 2018;28(243–255): e245. https://doi.org/10.1016/j.cmet.2018.06.021. 4. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63. https://doi.org/10.1016/j.cell.2013.06.037. 5. Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, Chen W, Zeiher AM, Potente M, Dimmeler S, Boon RA. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 2015;35:137–45. https://doi.org/10.1161/ATVBAHA.114.304277.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|