Abstract
Abstract
Background
Malaria elimination efforts can be undermined by imported malaria infections. Imported infections are classified based on travel history.
Methods
A genetic strategy was applied to better understand the contribution of imported infections and to test for local transmission in the very low prevalence region of Richard Toll, Senegal.
Results
Genetic relatedness analysis, based upon molecular barcode genotyping data derived from diagnostic material, provided evidence for both imported infections and ongoing local transmission in Richard Toll. Evidence for imported malaria included finding that a large proportion of Richard Toll parasites were genetically related to parasites from Thiès, Senegal, a region of moderate transmission with extensive available genotyping data. Evidence for ongoing local transmission included finding parasites of identical genotype that persisted across multiple transmission seasons as well as enrichment of highly related infections within the households of non-travellers compared to travellers.
Conclusions
These data indicate that, while a large number of infections may have been imported, there remains ongoing local malaria transmission in Richard Toll. These proof-of-concept findings underscore the value of genetic data to identify parasite relatedness and patterns of transmission to inform optimal intervention selection and placement.
Funder
Bill & Melinda Gates Foundation
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference26 articles.
1. Senegal PNLP. Bulletin de surveillance sentinelle du Paludisme. http://www.pnlp.sn/bulletin-de-surveillance-sentinelle-du-paludisme/. Accessed 30 June 2019.
2. Littrell M, Sow GD, Ngom A, Ba M, Mboup BM, Dieye Y, et al. Case investigation and reactive case detection for malaria elimination in northern Senegal. Malar J. 2013;12:331.
3. Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, et al. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J. 2017;16:459.
4. Tejedor-Garavito N, Dlamini N, Pindolia D, Soble A, Ruktanonchai NW, Alegana V, et al. Travel patterns and demographic characteristics of malaria cases in Swaziland, 2010–2014. Malar J. 2017;16:359.
5. Yukich JO, Taylor C, Eisele TP, Reithinger R, Nauhassenay H, Berhane Y, et al. Travel history and malaria infection risk in a low-transmission setting in Ethiopia: a case control study. Malar J. 2013;12:33.