Predicting the survival of kidney transplantation: design and evaluation of a smartphone-based application

Author:

Shahmoradi Leila,Borhani Alireza,Langarizadeh Mostafa,Pourmand Gholamreza,fard Ziba Aghsaei,Rezayi SorayyaORCID

Abstract

Abstract Background Prediction of graft survival for Kidney Transplantation (KT) is considered a risky task due to the scarcity of donating organs and the use of health care resources. The present study aimed to design and evaluate a smartphone-based application to predict the survival of KT in patients with End-Stage Renal Disease (ESRD). Method Based on the initial review, a researcher-made questionnaire was developed to assess the information needs of the application through urologists and nephrologists. By using information obtained from the questionnaire, a checklist was prepared, and the information of 513 patients with kidney failure was collected from their records at Sina Urological Research Center. Then, three data mining algorithms were applied to them. The smartphone-based application for the prediction of kidney transplant survival was designed, and a standard usability assessment questionnaire was used to evaluate the designed application. Results Three information elements related to the required data in different sections of demographic information, sixteen information elements related to patient clinical information, and four critical capabilities were determined for the design of the smartphone-based application. C5.0 algorithm with the highest accuracy (87.21%) was modeled as the application inference engine. The application was developed based on the PhoneGap framework. According to the participants’ scores (urologists and nephrologists) regarding the usability evaluation of the application, it can be concluded that both groups participating in the study could use the program, and they rated the application at a "good" level. Conclusion Since the overall performance or usability of the smartphone-based app was evaluated at a reasonable level, it can be used with certainty to predict kidney transplant survival.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3